Enhancing Effect of β-Lactoglobulin on the Rate of Cyclosporin Absorption

Vilasinee Hirunpanich Sato, Hitoshi Sato


tic   The aim of this study was to determine the effects of β-lactoglobulin (β-LG) on the intestinal absorption of cyclosporin A (CsA) in vivo and in vitro. After intraduodenal co-administration of CsA (5 mg/kg) with 150 mg/kg β-LG, Tmax was significantly lower than that of control rats which were given the same dose of CsA without β-LG. Cmax and AUC were significantly increased as compared with the control while T1/2 were not significant. Moreover, a deconvolution method revealed that the rate of CsA absorption was enhanced by β-LG (150 mg/kg) by about 12 times. These results indicate that β-LG significantly enhanced the rate of CsA absorption and the extent of CsA bioavailability in the gut. β-LG did not change the solubility of CsA in vitro, but β-LG increased the apical-to-basolateral permeability clearance of CsA (PScell), with pronounced increase in the permeability of unbound CsA (PSu,cell), across the Caco-2 monolayers in a concentration-dependent manner in vitro.  It was thus considered that β-LG-mediated transport of CsA might be a possible mechanism to enhance the intestinal absorption of CsA in vivo.


Pharmaceutical science; drug delivery

Full Text:



[1]. Sawyer L, Kontopidis G. The core lipocalin, bovine beta-lactoglobulin.. Biochim Biophys Acta 2000;1482(1-2):136-148. PubMed PMID: 11058756.

[2]. Barbiroli A, Beringhelli T, Bonomi F, Donghi D, Ferranti P, Galliano M, et al. Bovine beta-lactoglobulin acts as an acid-resistant drug carrier by exploiting its diverse binding regions.. Biol Chem 2010;391(1):21-32. PubMed PMID: 19919177. doi: 10.1515/BC.2010.008.

[3]. Chen L, Subirade M. Chitosan/beta-lactoglobulin core-shell nanoparticles as nutraceutical carriers. Biomaterials 2005;26(30):6041-6053. PubMed PMID: 15885766. doi: 10.1016/j.biomaterials.2005.03.011

[4]. Englund G, Lundquist P, Skogastierna C, Johansson J, Hoogstraate J. Afzelius L, Andersson TB, Projean D. Cytochrome p450 inhibitory properties of common efflux transporter inhibitors. Drug Metab Dispos. 2014;42(3):441-447. PubMed PMID: 24396142. doi: 10.1124/dmd.113.054932

[5]. Sharma P, Varma MVS, Chawla HPS, Panchagnula R. In situ and in vivo efficacy of peroral absorption enhancers in rats and correlation to in vitro mechanistic studies.. Farmaco 2005;60(11-12):874-883. PubMed PMID: 16243320. doi: 10.1016/j.farmac.2005.08.007.

[6]. Lukas SE, Moreton JE. A technique for chronic intragastric drug administration in the rat. Life Sci;1979(13):593-600.

[7]. Bonifacio FN, Giocanti M, Reynier JP, Lacarelle B, Nicolay A. Development and validation of HPLC method for the determination of Cyclosporin A and its impurities in Neoral capsules and its generic versions.. J Pharm Biomed Anal 2008;49(2):540-546. PubMed PMID: 19124213. doi: 10.1016/j.jpba.2008.11.027.

[8]. Kiwada H, Morita K, Hayashi M, Awazu S, Hanano M. A new numerical calculation method for deconvolution in linear compartment analysis of pharmacokinetics.. Chem Pharm Bull (Tokyo) 1977;25(6):1312-1318. PubMed PMID: 890855.

[9]. Hirunpanich V, Katagi J, Sethabouppha B, Sato H. Demonstration of docosahexaenoic acid as a bioavailability enhancer for CYP3A substrates: in vitro and in vivo evidence using cyclosporin in rats.. Drug Metab Dispos 2005;34(2):305-310. PubMed PMID: 16299163. doi: 10.1124/dmd.105.007088.

[10]. Jiko M, Yano I, Wakasugi H, Saito H, Inui K. Evaluation of pharmacokinetic interaction between cyclosporin A and probucol in rats, Pharm Res. Pharm Res 2002;19(9):1362-1367. PubMed PMID: 12403074.

[11]. Artursson P. Epithelial transport of drugs in cell culture. I: A model for studying the passive diffusion of drugs over intestinal absorptive (Caco-2) cells.. J Pharm Sci 1990;79(6):476-482. PubMed PMID: 1975619.

[12]. Bonifacio FN, Giocanti M, Reynier JP, Lacarelle B, Nicolay A. Development and validation of HPLC method for the determination of Cyclosporin A and its impurities in Neoral capsules and its generic versions. J Pharm Biomed Anal 2008;49(2):540-546. PubMed PMID: 19124213. doi: 10.1016/j.jpba.2008.11.027.

[13]. Sato H, Liu HX, Adachi I, Ueno M, Lemaire M, Horikoshi I. Enhancement of the intestinal absorption of a cyclosporine derivative by milk fat globule membrane.. Biol Pharm Bull 1994;17(11):1526-1528. PubMed PMID: 7703979.

[14]. Charkoftaki G, Kytariolos J, Macheras P. Novel milk-based oral formulations: proof of concept. Int J Pharm 2010;390(2):150-159. PubMed PMID: 20117197. doi: 10.1016/j.ijpharm.2010.01.038.

[15]. Liang L, Tajmir-Riahi HA, Subirade M. Interaction of beta-lactoglobulin with resveratrol and its biological implications. Biomacromolecules 2007;9(1):50-56. PubMed PMID: 18067252. doi: 10.1021/bm700728k.

[16]. Burczynski FJ, Moran JB, Cai ZS, Forker EL. Beta-lactoglobulin enhances the uptake of free palmitate by hepatocyte monolayers: the relative importance of diffusion and facilitated dissociation.. Can J Physiol Pharmacol 1990;68(2):201-206. PubMed PMID: 2311001.

[17]. Puyol P, Perez MD, Sanchez L, Ena JM, Calvo M. Uptake and passage of beta-lactoglobulin, palmitic acid and retinol across the Caco-2 monolayer.. Biochim Biophys Acta 1995;1236(1):149-154. PubMed PMID: 7794943.

[18]. Burczynski FJ, Wang GQ, Elmadhoun B, She YM, Roberts MS, Standing KG. Hepatocyte [3H]-palmitate uptake: effect of albumin surface charge modification. Can J Physiol Pharmacol.2001;79: 868-875 2001;79(10):868-875. PubMed PMID: 11697746.

[19]. Yi J, Lam TI, Yokoyama W, Cheng LW, Zhong F. Controlled release of β-carotene in β-lactoglobulin-dextran-conjugated nanoparticles' in vitro digestion and transport with Caco-2 monolayers.. J Agric Food Chem 2014;62(35):8900-8907. PubMed PMID: 25131216. doi: 10.1021/jf502639k.


Copyright (c) 2015 Hitoshi Sato

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

               AR Journals

18K, Street 1st, Gaytri Vihar, Pinto Park, Gwalior, M.P. India

Copyright@arjournals.org (Design) 2009-2021


Follow @arjournals on Twitter