Antioxidant and anticancer studies of chloroform extract of *Morinda pubescens* leaf

D Jayakumar¹, S Arockiasamy¹, S Archana¹, R Jaya Santhi¹

Corresponding author:

R Jaya Santhi
¹P.G & Research Department of Chemistry, Auxilium College, Vellore - 632 006, Tamil Nadu, India.

Abstract

Morinda pubescens is used for the treatment of diabetes, liver diseases, wound healing, cancer etc and this study was aimed to screen the chloroform extract of *Morinda pubescens* leaves for biologically active compounds and to evaluate the antioxidant and anticancer potential against HepG2 cell lines. The antioxidant activity of extract and its isolated compounds were carried out using 2, 2 diphenyl-1-picrylhydrazyl assay using L-ascorbic acid as a standard. The tetrazolium salt 3-[4, 5 dimethylthiazol-2-yl]-2,5 diphenyl trazolium bromide was used to determine the cell viability against HepG2 cells and Caspase-3 and -9 carried out to find the mechanism of the cytotoxicity. Octonyl glucopyranose, the isolated bioactive compound was subjected to RT-PCR study to confirm the apoptotic activity. The results revealed that the chloroform extract and three isolated compounds namely phytol, Octonyl glucopyranose and hexonyl glucopyranose exhibited significant antioxidant activities with IC₅₀ values of 550, 758, 482 and 645μg/mL respectively. The Octonyl glucopyranose one of the isolated bioactive compounds decreased the cell viability in HepG2 cells dose-dependently and increased the caspase-3 and caspase-9 protein levels to 1.3 folds than the normal cells. Augmentation of p53 expression was observed in the Octonyl glucopyranose treated cells than the untreated cells. These findings might offer valuable insights into the mechanism of anti-cancer activity of Octonyl glucopyranose HepG2 cells.

Keywords: DPPH, MTT, Octonyl glucopyranose, antioxidant, caspases, Morinda pubescens

Introduction

The liver, as key organ of metabolism and excretion, is constantly endowed with the task of detoxification. Hepatotoxins, including viruses, fungal products, bacterial metabolites, minerals, environmental pollutants and chemotherapeutic agents can induce various disorders in the human organs [1]. Most patients diagnosed with Hepatocellular carcinoma have low recovery rates, and conventional and modified therapies currently available are rarely beneficial [2]. In view of severe undesirable side effects of synthetic drugs, there is growing focus to follow systematic research methodology and to evaluate scientific basis for the traditional herbal medicine which are claimed to possess Hepatoprotective activity.

Medicinal plants are important sources of new chemical substance that potentially have strong therapeutic effects. Most people living in developing countries are dependent on traditional medical practices for their primary health care and the higher plants are known to be the main source for drug therapy in traditional medicine [3]. *Morinda pubescens* of Rubiaceae family commonly known as “Nuna” is widely distributed throughout India and its leaves are used in the treatment of liver diseases, ulcer and to heal the wounds [4, 5]. Several species of *Morinda* genus are scientifically reported for anticancer activities [6-12]. The thorough literature survey shows that there is no scientific report on liver cancer using *Morinda pubescens*. Hence, the present study was aimed to evaluate the antioxidant potential of the eight isolated compounds from the chloroform extract of *Morinda pubescens* leaves and to study the cytotoxic effect of selected isolated compounds like phytol, Octonyl glucopyranose and hexonylglucopyranose based on their antioxidant activities and to choose an bio active compound Octonyl glucopyranose to further investigate anticancer activity of against HepG2 cells lines.

Material and methods

Chemicals

All chemicals were of analytical grade. Silica Gel 60, Silica gel 60 F₂₅₄ coated plates, for the extractions and analytical procedures, chloroform, ethyl acetate, methanol and ascorbic acid were purchased from Merck (Darmstadt, Germany). DPPH radical (1,1-diphenyl-2-picrylhydrazyl) was purchased from Sigma Chemical Co.(St. Louis, Mo, USA). Mass spectra were carried out using JEOL-GC mate HREIMS instrument and the UV spectra were recorded using SYSTRONICS 2201 instrument. NMR spectra were studied using a Bruker FTNMR 500 spectrometer. Chemical shifts were expressed as ppm relative to the TMS. Deuterated chloroform was used as solvent for all the samples.

Plant Extract

This work is licensed under a Creative Commons Attribution 3.0 License.
Fresh leaves of *Morinda pubescens* was collected in October 2009 in Auxilium college campus, Vellore, Tamil Nadu, India and was authenticated by Ms. Isabella Roseline, Head, Department of Botany, Auxilium College. Two sets of herbarium voucher specimens were mounted and one set was placed in the Department of Botany, Auxilium College with the code no DRC_mp1 and the other set has been preserved in our laboratory for future reference. Extraction and isolation of Individual constituents of chloroform extract

Leaves of the *Morinda pubescens* (3.5kg) were shade dried, pulverized and percolated thrice in solvents like Hexane, Chloroform, Ethylacetate and aqueous Methanol. The chloroform fraction was suspended in distilled water and partitioned with hexane, ethylacetate and resulting chloroform portion was concentrated at 40 C under reduced pressure by a rotary vacuum evaporator (Super fit, Chennai, India) and got a semisolid residue of approximately 28.0g. The chloroform fraction was subjected to silicagel column (60-120 mesh) using chloroform-ethylacetate-methanol-water gradient system as an eluent and obtained approximately ten fractions. The fractions one through six upon purification yielded known plant fatty acids like, linoleic acid, caprylic acid, capric acid, phytol, phytolacetate and artenol and the Fraction 7 and 8 were pooled again and purified by column chromatography using 230-400 mesh and eluted with a stepwise gradient mixture of chloroform-ethylacetate with the ratio of 8:2, 7:3 and 5:5 which yielded two subfractions of A and B. The subfractions ‘B’ which was approximately 233mg was further purified using preparative TLC plates (20x20cm) with chloroform-ethylacetate as developing solvents (1.8:1.2) to isolate Octonyl glucopyranose (82mg). Upon purification of subfraction ‘A’, hexononylglucopyranose were obtained. The isolated compounds were confirmed by characterizing using different spectroscopic techniques like UV, IR, GC-MS, 1DNMR and 2DNMR and the detailed spectra of potent bioactive compounds like phytol, Octonyl glucopyranose and hexononylglucopyranose are explained in detail.

DPPH-Antioxidant assay

Different concentrations varying from 100 to 800μg/mL of chloroform extract and the isolated compounds were taken in different cuvettes. About 2mL of 6X10^-5 of methanolic solution of 2, 2-diphenyl-1-picrylhydrazyl radical (DPPH) was added to these cuvettes and the absorbance were measured. The absorbance of the samples was measured at 517nm to calculate antioxidant activities of the extract and the isolated compounds using a standard equation [13].

3-(4,5-Dimethylthiazol – 2-yl)-2, 5-diphenyldiazotetrazolium bromide (MTT) assay

To determine cell viability, cell number was quantified using the standard Colorimetric MTT assay. Viability was defined as the ratio of the absorbance of treated cells to untreated cells[14-16] and Cyclophosphamidase was used as positive control.

Determination of Caspase activity

The Caspase - 3 activities was monitored by the cleavage of Acid-Asp-Glu-Val-Asp-p-nitroanilide (DEVD-pNA) according to the protocol outlined by the manufacturers and the Colorimetric Protease Assay Kit (Promochem, USA) was used for the study. The cleavage of Ac-LEHD-pNA was used for caspase-9 using the above said protocol. Caspase activity was measured by cleavage of the above substrates to free pNA. The cleaved substrates, free pNA were measured by noting the absorbance at 405nm in a microtiter plate reader [17, 18]. Relative caspase-3 and 9 activities were calculated as a ratio of absorbance of treated cells to untreated cells.

Reverse Transcription-Polymerase Chain Reaction analysis

Total RNA was isolated with One-step RNA Reagent, purchased from Bio Basic Inc, Canada and spectrophotometrically quantified. The RT reaction was performed with 5 μg of total RNA and an oligo (dT) primer using the First-Strand cDNA synthesis kit purchased from Applied Biological Material Inc, Canada according to the manufacturer's instructions. The experiment was carried out by the standard procedure [19] and the primers used are: (F) 5 ’GAAGACCCAGGTCCAGATGA 3’ (R) 5’CTCCGTCTAGTGCTGCTGACT 3’ and GAPDH.

Results and Discussion

Characterization of isolated compounds

Characterization of phytol

UV λ_{max} 220. IR (KBr) ν_{max}/cm⁻¹ 3433,br (-OH), 2936(CH), 970(Vinyl oops), MS m/z (rel.int): 298.55[M+], calculated for C₂₀H₄₂O. ¹H (CDCl₃, 500MHz), 4.08(1H, s) indicate the presence of OH group, 3.57 (2H, t) presence of methylene group adjacent to OH, -1.02-1.303 (6H, broad) is due to long aliphatic chain, -1.4 (15H, dd) was assigned to terminal methyl groups. In ¹³C NMR, Peak at -62.4 indicates the presence of oxygen linkage. All these spectral data confirm phytol and its IUPAC name is 3,7,11,15- tetra methyl hexa decan-1-ol. The proposed structure is given in figure 1a.

Characterization of Octonyl glucopyranose

In the ¹H and ¹³C NMR signal indicated the octanoyl partial structure. In the ¹HNMR spectrum of Octonyl glucopyranose, two anomic proton signals at -5.45 ((1H, d) J -7.8 Hz) and 4.31 ((1H, d) J -7.8 Hz) were observed. The ¹³CNMR also displayed signals at -104.5 (d), 77.9 (d), 77.9 (d), 75.0 (d), 71.4 (d), and 62.6 (t), attributable to terminal β-D-glucose and signals at -95.5 (d), 77.7 (d), 77.7 (d), 73.8 (d), 70.8 (d), and 69.4 (t) for the inner glucose unit. The 1-6 linkage of two glucose units present in Octonyl glucopyranose and the octanoyl moiety was present on the anomic carbon of the central glucose as reported [20]. From the above evidence it was identified as 6-Ô(β-D-glucopyranosyl)-1-Ô-octanoyl-β-D-glucopyranose. The structure was confirmed by HMBC spectra and the HMBC experiment showed the correlation contours between H-1 of the central glucose (- 5.45) and the carbonyl carbon of the octanoyl moiety (- 174.1), and between H-
1 of the terminal glucose (- 4.31) and C-6 of the central glucose (- 69.4). The proposed structure of the compound is given as 1b.

Figure 1a Structure of phytol
IUPAC name: 3,7,11,15- tetra methyl hexa decan-1-ol

Figure 1b Structure of Octonylglycopyranose
IUPAC name: 6-3(β-D-glucopyranosyl)-1-O-octanoyl-β-D-glucopyranose

Figure 1c Structure of hexanoyl glycopyranose
IUPAC name: 6-3(β-D-glucopyranosyl)-1-O-hexanoyl-β-D-glucopyranose

Characterization of Hexonyl glycopyranose

Hexonyl glycopyranose was also obtained as a white powder. The HREIMS exhibited a significant molecular ion peak at \(m/z \) 440. These MS data together with the \(^1\)H and \(^{13}\)C NMR data, suggested the molecular formula as \(\text{C}_{16}\text{H}_{32}\text{O}_{12} \). The IR spectrum showed hydroxyl and carbonyl absorptions at 3400 cm\(^{-1}\) and 1732 cm\(^{-1}\). In the \(^1\)H NMR spectrum, signals at - 3.2 to 5.4 and in \(^{13}\)C NMR signals at - 75 and 77, showed similar to those of Octonyl glycopyranose. Only slight differences were observed in the high field where, instead of the signals for an octanoyl moiety, a signal for a hexanoyl moiety was observed. This observation was further supported by the \(^{13}\)C NMR spectrum, which showed signals at - 14.3 (q), 23.4 (t), 25.3 (t), 32.3 (t), 34.8 (t), and 174.1 (s), assigned to a hexanoyl moiety [20]. The \(^1\)H NMR signals for the two anomeric protons were observed at - 5.45 and 4.31. Analysis of the HMBC spectra led to assignment of all \(^1\)H and \(^{13}\)C NMR signals for Hexonyl glycopyranose. Thus the compound was identified as 6-3(β-D-glucopyranosyl)-1-O-hexanoyl-β-D-glucopyranose and the structure is given as 1c.

Antioxidant activity by DPPH assay

The antioxidant activities of the extract and the individual compounds are given in Table 1.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Antioxidant Potential (%)</th>
<th>IC50(μg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloroform Extract</td>
<td>64.4±0.50</td>
<td>550</td>
</tr>
<tr>
<td>Phytolacetate</td>
<td>48.6±0.91</td>
<td>>800</td>
</tr>
<tr>
<td>Phytol</td>
<td>51.3±1.01</td>
<td>758.33</td>
</tr>
<tr>
<td>Octonyl glycopyranose</td>
<td>64.6±0.64</td>
<td>482</td>
</tr>
<tr>
<td>Hexonyl glycopyranose</td>
<td>62.2±1.65</td>
<td>645</td>
</tr>
<tr>
<td>Artanol</td>
<td>58.8±0.23</td>
<td>644</td>
</tr>
<tr>
<td>Linoleic acid</td>
<td>56.2±0.29</td>
<td>655</td>
</tr>
<tr>
<td>Caproic acid</td>
<td>60.2±1.08</td>
<td>658</td>
</tr>
<tr>
<td>Caprylic acid</td>
<td>53.6±0.54</td>
<td>700</td>
</tr>
<tr>
<td>L-Ascorbic acid</td>
<td>92.0±1.41</td>
<td>28</td>
</tr>
</tbody>
</table>

Each value represents the Mean ± SD of three independent measurements.

The extract and its isolated compounds exhibited significant antioxidant activity in DPPH assay. The IC50 value of extract was observed to be 550μg/mL. The total antioxidant capacity of the extract and the isolated compounds were found to increase with increase in concentration. Among the isolated compounds phytol, Octonyl glycopyranose and hexonyl glycopyranose showed significant antioxidant activities with IC50 values of 758, 482 and 645μg/mL respectively. The results from the table clearly indicate that the antioxidant activities of the Octonyl glycopyranose and hexonyl glycopyranose at the concentration of 800 μg/mL are almost same when compared to the chloroform extract. Based on the significant antioxidant potential, the phytol, Octonyl glycopyranose and hexonyl glycopyranose were tested for cytotoxicity and compared with the chloroform extract.

Cytotoxic activity by MTT assay

Carcinogenesis is a multistage process with an accumulation of genetic alterations resulting in the tumor. With the aim of preventing or slowing down or reversing the process of carcinogenesis, induction of apoptosis is considered to be one of the most important targets in a preventive approach [21]. To compare the cytotoxicity of phytol, Octonyl glycopyranose, hexonyl glycopyranose with combined chloroform extract, the MTT assay was carried out against HepG2 cells and the results are given in
The results indicate that the extract and Octonyl glucopyranose demonstrated marked cytotoxic activity on HepG2 cell type with an IC\textsubscript{50} value of 50 μg/mL and 93.71 μg/mL. Among the three isolated compounds studied, Octonyl glucopyranose exhibited the most potent cytotoxic activity towards the HepG2 cells. In order to understand its mechanism, Octonyl glucopyranose was used for further investigations.

Activation Caspase-3 and Caspase-9 by Octonyl glucopyranose

Caspases present in mitochondria are the crucial mediators of apoptosis. To understand the mechanism, Octonyl glucopyranose was treated with caspase protein levels and the caspase-3 and caspase-9 were subjected to study. Among the 14 caspases identified in mammals, caspase-3 (previously called CPP32, Yama, apopain) is the major downstream protease in all apoptotic pathways [22-24]. As shown in figure 3, the caspase-3 and caspase-9 levels are activated by the treatment with Octonyl glucopyranose in a dose dependent manner. To confirm the enhanced protein expression caused by the alteration of the mRNA level, the Octonyl glucopyranose was subjected to RT-PCR analysis.
Conclusions

The results of the study revealed that the Morinda pubescens possessed antioxidant and cytotoxic activities on HepG2 cell. The extract and the three of its isolated compounds phytol, Octonylglucopyranose and hexonyglucopyranose from Morinda pubescens leaf exhibited strong antioxidant and cytotoxic effect in a dose dependent manner. Octonylglucopyranose, one of the isolated compounds found to possess good anticancer activity and this could be a promising novel anti-cancer drug for liver cancer in near future.

Acknowledgements

The authors are grateful to UGC, New Delhi for providing financial support to carry out this work.

References

